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HALF-NORMAL PLOTS
FOR MULTI-LEVEL FACTORIAL EXPERIMENTS

S. A. Krane
C-E-I-R, Inc., Dugway Field Office

1. INTRODUCTION. Half-normal plots for the interpretation of 2P
factorial experiments have been developed and popularized largely through
the work of Cuthbert Daniel (see Daniel [1956] and[1959]). In this
method the 2P - 1 main effects and interactions are estimated from ob-
servations on the 2P treatment combinations. The empirical cumulative
distribution of these estimates is then graphically compared with a cu-
mulative distribution derived from a normal population. A rationale for
this procedure is found in the approximate normality of the null distri-
bution of the estimates, based upon normality of experimental errors or
upon the tendency embodied in the Central Limit Theorem. According
to Daniel, the half-normal plot permits the analyst to judge the reality
of the largest main effects and interactions and serves to indicate bad
values, heteroscedasticity, dependence of variance on mean and some
types of defective randomization. The object of the present paper is to
indicate and illustrate possible applications of half-normal plots to
balance multi-level factorial experiments in general,

2. AN EXAMPLE. It appears easiest to introduce the technique of
half-normal plotting for balanced multi-level factorial experiments in the
context of a particular example. For this purpose we shall employ
Example 8.1 of Davies Y_l 954}, According to the authors (p. 291, ''the
data . . . are taken from the results of an investigation into the effects
on the physical properties of vulcanized rubber of varying a number of
factors, the property recorded being the wear resistance of the samples,
and the factors being:

A five qualities of filler
B three methods of pretreatment of the rubber
C four qualities of the raw rubber . . ,"

The data are reproduced in Table 1. From the data, the author develops
the usual analysis of variance as shown in Table 2. The interpretation
(Davies [1954, P. 29@] .) notes the significance of all. main effects and two-
factor interactions when tested against the three-factor interaction as
error,
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264 Design of Experiments

In order to analyze the given experimental data by half-normal
plotting, we shall reduce the data to single degree of freedom sums of
squares. The method to be used depends upon the definition of complete
sets of orthogonal contrasts for each of the factors A, B, and C. This
definition generally is somewhat artibrary, but it is our experience
that an experimenter familiar with the nature of the factor levels and
the purpose of the experiment can, in most instances, provide suffi-
cient justification for the prior definition of a meaningful complete set
of single degree of freedom orthogonal contrasts among the levels.

The use of orthogonal polynomials for quantitative levels is often indi-
cated, while for qualitative levels, meaningful comparisons among
certain levels are often obvious. On occasion, only a partial set of
orthogonal comparisons will appear to be of intrinsic value and it may
be necessary to complete the orthogonal set by adding contrasts of no
apparent importance. In the absence of useful information on the nature
of the levels (except that they are all qualitative) in the present example,
we shall be totally arbitrary in defining the contrasts, but will attempt
to indicate their potential interpretations. ~These contrasts are shown
in Table 3. For factor A, contrast Ao, is the '"'null" or ""average"

contrast¥*, while A1 compares the average of levels 1 and 2 against

the average of levels 3, 4 and 5, A2 compares level 1 vs. level 2, A3

compares level 3 against the average of levels 4 and 5 and A4

compares level 4 with level 5. The orthogonality of the set is evident
in that the coefficients sum to zero for all contrasts except the null
contrast and the sum of products of coefficients is zero for all pairs

of contrasts. For factor B, the non-null contrasts compare level 1
with level 2 with the average of levels 1 and 3. (In another context,

B1 and B2 are the orthogonal polynomials for three equally spaced

levels, B1 being the linear contrast and BZ the quadratic. ) For factor C,
the contrasts C;, C, and C3; make the following comparisons among levels,

respectively: (1 and 2) vs. (3 and 4), (1 and 3) vs. (2 and 4) and (1 and 4)

&

Daniel 1962 has suggested the term '"null" is inappropriate because
of the generally positive expectation of this contrast. We chose the
term because (i) it is connoted by our zero subscript notation, (ii)
this contrast is not a comparison among levels, and (iii) this contrast
is generally ""of no consequence' in the analysis.
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Table 3. ORTHOGONALlcONTRASTS EMPLOYED
Factor A
Level Sum of
Contrast 1 2 5 | Squares
Ao +1 +1 +1 +1 +1 5
Al +3 +3 -2 ~2 -2 30
A3 0 0 +2- -1 -1 6
Au 0 0 +1 -1 2
Factor B
' , Level ' Sum of
Contrast 1l 2 3 . Squares
Bo +1 +1 +1 3
Be "l "‘2 "1 6
Factor C
Level .
1. 2 3 4 Sum of
Contrast ‘ Squares
Co +1 +1 +1 +1 L
Cl -1 -1 +1 +1 4
02 -1 +1 -1 +1 4
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vs. (2 and 3). These contrasts would be of interest, e. g., in the event
that factor C incorporated two subfactors, say D and E, where
levels 1and 2 are at the low level of D and levels 3 and 4 at the

- high level of D, while levels 1 and 3 are at the low levelof E and 2

and 4 at the high level of E. Then C1 is the effect of D, Cz is the
effect of E and C3 is the interaction of D and E.

The three sets of contrasts (Al’ AZ’ Ag, A4). (Bl' Bz) and
(Cl' CZ' C3) will provide a basis for reducing the sums of squares for
factor A (4 d.f.), factor B (2 d.{.) and factor C (3 d.£.) to indepen-
dent single degree of freedom sums of squares. It remains to develop
such a basis for the two- and three~factor interactions. A natural
method for accomplishing this is the extension of the original single
factor contrast sets to interaction contrast sets. This method is exem-~
plified in Table 4 for Factors B and C, All possible combinations
of the levels of B and C are employed as columns, while rows are
contrasts. For any combination of a particular level, say i, of B
with a particular level, say j, of C, the coefficient in the contrast
Bqu is obtained by multiplication of the coefficient of level i of B
in the contrast Bq by the coefficient of level j or C in the contrast

C,. Sums of squares of the B and C contrasts may be obtained by

multiplication of the corresponding sums of squares for B and for C.

Of the 12 orthogonal contrasts in Table 4, BOCO is the null contrast
while the contrasts Bocl’ BOCZ’ BOC3. B,Cqy and B,C( are simply the
original contrasts Cl’ Ca, Cj, B1 and Bp, respectively, averaged over
all levels of the other factor. The 8ix contrasts Blcl’ BICZ’ BIC3’

BZCl’ B,C,, B,Cj3 are new and constitute a basis for partitioning the BC

interaction sum of squares (6 d. f.) into orthogonal single degree of
freedom sums of squares. Application of this method will likewise pro-

duce bases for partitioning the sums of squares for AB (8 d.£f.), AC
(12 d.f.) and ABC (24 d. £.).

The above method of defining interaction contrasts is incorporated
in the method we employ for calculating half-normal variates by desk
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268 Design of Experiments
calculator. A sample work sheet for this method is shown in Table 5a .
and 5b*, Section I of this table is merely a recopying of the original

data from Table 1. In this section a column of five numbers represents
the observations for the five levels of A over a particular one of the
twelve combinations of levels of B and C represented by columns. Section
II is computed by operating on these columns with the contrasts Ay, Al'

A, A3, Ay For example, products of the coefficients of A0 with the

corresponding elements of a particular column are formed and these

five products are summed and entered in Section II in the first row of *
that column. Similarly, sums of products of coefficients ofAl with

corresponding elements of columns are entered in the second row of
Section II, and so forth. Thus each element of Section II is formed as .
a sum of products of coefficients of, say, AP with corresponding ob-

servations and is entered on the ( ptl )-th row of the appropriate column.

Section II may be visualized as an aggregation of 20 rows of three
elements each, where each row corresponds to a particular contrast of
A and a particular level of C. The three elements of each row corres-
pond to the three levels of B. Now Section IIl is formed from Section II
by summing products of coefficients of the B contrasts and corresponding
elements of each row of three. Each such sum of productsis entered in
the corresponding row, with the sum of products from coefficients of Bq .
entered as the ( g + 1 )-th element of that row.

Section III may be visualized as comprising four sub-sections of 15
elements each, with the elements of a sub-section corresponding to a
particular contrast of AB (i.e., a particular combination of a contrast
of A and a contrast of B) and the four sub-sections corresponding to the
four levels of C. Section IV is formed from Section III by summing pro-
ducts of coefficients of the C contrasts and identically placed elements
from the four corresponding sub-sections. The sum of products is
entered in the corresponding place of one of the sub-sections of Section IV, s

with the sum of products from coefficients of Cr entered in the (r+l1)~th
sub-section.

%

This calculation methqod is essentially the same as that given in
Appendix 8G of DaviesEA954, PP. 363-6} . In some instances the
format in Davies (with the addition of final column of half-normal
variates) may be preferred,
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The method of calculation of Sections 1I, III and IV may not be appar-
ent at first glance, but verifying part or all of the data in Table 5a from
the description above should help to clarify the process. Computing clerks
will find it helpful to write the coefficients of each contrast on a strip of
paper, appropriately oriented vertically or horizontally and spaced so
that when overlaid on the worksheet each coefficient appears adjacent
to the element to be multiplied.

Section V (Table 5b) merely identifies the elements of Section IV and
subsequent sections according to the contrasts they represent. This
identification is, of course, highly systematic and might well be omitted
when familiarity with the method is attained.

Section VI containe the '"divisors', obtained by multiplying the sums
of squares of the coefficients of the contrasts ‘AP’ Bq, C, appropriate to
each element, as found in Table 3.

Section VII contains the single degree of freedom sums of squares
corresponding to each contrast. Each element is obtained by squaring
an element of Section IV, dividing by the corresponding element of
Section VI and entering in the corresponding place of Section VII.

Section VIII contains the half-normal variate values, each of which
is computed as the square root of the corresponding element of Section VII,
positive or negative according to the sign of the corresponding element of
Section IV. (It would perhaps have been advisable to include the first
decimal of each of these values in order to discriminate more fully among
them. }

Certain check computations in the method have been omitted, but an
over-all check can be readily obtained from Section VII by comparing
sums of these single degree of freedom sums of squares with the usual
analysis of variance of Table 2. These checks are indicated in Table 6.
It will be noted that all sums of squares agree with Table 2 within the
expected rounding error accumulated from Section VII.

The half-normal variates must now be ordered by magnitude before
plotting. This ordering is shown in Table 7, along with an identification
of the contrast represented (letters with subscripted zeroes have been
dropped) and the appropriate quantile of the empirical distribution, de-
fined by '
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Table 6. DEVELOPMENT OF USUAL ANALYSIS OF VARIANCE
Source d.rf. Contrasts S.8.
A 4 A1ByCq AzBoCo AsBICo AuBCq 478462
B 2 AgB1Cy AyB,C, 52795
c 3 AoBoCy AgBoCp AgByCy 150239
AB 8 A1B)Cqo AgB;Cy ABICo AB, Cy
A,B,C, AaBéco A3B,Co AyBCy 16808
Ac 12 A1BoCy AgBoCy AzBCy AyBoCy
A1B0Cp ABoC, ASBOC, A,BoCo
A13003 AByCq A33003 A,B,Cq 53890
BC 6 AgB1Cy AgB Cy AgB,Cq
AgBoCy AgB,Cp AB,C. 6417
ABC 2 A)B)C; AZB,C, AgB.C, A)B.C,
A)B)Cp AzB 0, AgB C, AyB. O,
AB;Cq AgB,Cg AsB, G, AB,0,
A1BoCy AgBaCy AgByC) A)B.C)
A1By0p AgB,C, A3B,C, AyB,C,
A1B,C3 AgB,Cy A,B,0, AyB,Cq 7690
Total 59 766301
Mean 1 AyByC, 6069348
Raw total 60

6835649




Order Variate Contrast Quantile

Table 7. HALF-NORMAL VARIATES

Order Variate

273

Contrast Quantile

k X, P, k X P,
60 2464 Null N 30 2k A3B,Cq .5000
59 byt Ay .9915 29 23 AyB,Cy .4831
58 395 Ay .9746 28 22 AxC, 4661
57 367 c3 .9576 27 20  -AC .4492
56 204 A, 9407 26 18 -A,B,C, 4322
55 230 B, .9237 25 17 A3B203 4153
54 191 Ay .9068 24 17 -AyC, .3983
53 152 -AyCy .8898 3 17 AgBC, .3814
52 132 A,Cq .8729 22 16 -A3B,Cy 3644
51 111 c, .8559 21 15 A,By .3475
50 94 = AB, .8390 20 it B Gy .3305
hg 64 A3Bl 8220 19 13 A ByCy .3136
48 59 A5G, .8051 18 12 A23203 .2966
bt 54 -C, - .7881 17 11 -A)B,C;y 2797
L6 50 —A3B2 7712 % 9 - -AgBoC, .2627
by . 50 -B,Cq .T542 15 9 -B, 2458
Ly 47 -B,Cp .T373 14 8 -A2B103 .2288
43 46 ByCy . 7203 13 - T «AyB, .2119
ho e - -A3Cy 7034 12 7T -A3BGC, 1949
41 he -A,Cy .6864 11 6 -B,Cg .1780
4o 38 AC, 6695 10 5 AyB,C, .1610
39 36 A,B,C - .6525 9 4 AB,C, L1441
39 34 AyBy .6356 8 L -AB5Cy 1271
37 33 -A3Cg .6186 T 3 -AyB, ,1102
36 32 ‘A1B2C3 | 56017 ) 6 3 A BCy .0932
35 29 -A;ByCq 5847 5 2 -AB, .0763
34 29 AsB,Cy 5678 . 4 1 -A{B,Cy .0593
33 a7 ~AgB; 0y .5508 3 1 AyB,C, .Oh24
32 27 -B;Cy 5339 2 0 -AB,Cq 0254
31 27 B,C, 5169 1 0 AjCq .0085
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P-—-Zk-l

k 2n ' .

where k is the rank order and n is the number of variates. Here, as
in most instances, it seems appropriate that the null contrast be excluded
from the variates to be examined. The sign of the contrast is now
attached to the label and only positive variates are plotted.

The variate values and quantiles are next plotted on halfi-normal
probability paper (as in Figure 1) for interpretation. Discussion of the

interpretat ion phase of the analysis of this example will be deferred to
a later section. *

3, SOME THEORY". At this point we shall touch briefly on some
theoretical aspects of the development of half-normal variates from multi-
level factorial experiments. To simplify the discussion we shall assume
that we are concerned with a threerfactor experiment, although it should

be remembered that the theory and methodology apply with equal validity
to any number of factors.

We denote by yy.. the observation obtained with factor A at level h,

factor B at level i and factor C at level j, whereh =1,2,..., a; : .
i=1,2,...,bj=1,2, ..., c. The coefficients of the orthogonal
contrasts for factor A will be indicated by aoh denoting the coefficient

for level h in the p-th contrast, Similarly the coefficients of the con-

trasts for factors B and C are denoted bqi and Crj respectively.
We assume that for each factor there is a null contrast, these being de-

noted AO’ BO’ CO and defined by

agy = boi = coj =1; all h, i, j. »

b "
This section is based on well-known results concerning distributions of

linear functions of random variables and may be verified by reference

to standard introductory texts on mathematical and theoretical statistics.
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. Furthermore, by the definition of orthogonal contrasts, ‘

2;1 aph= iqui = Z er = 0
J

’: P=1,2,..-, a-l; q=l,2;"..’ b'l; r=1,2,--., r-l;
and

¥ .

§ *ph %p'h " Ei:‘bqi Pgi® § CrjCry = O

P# D' q# q; r# r.

The three-factor contrasts are defined by

(ApBgCr) = % 2:‘ 5;‘ 2 h bqi ©rj Yhij

p=0’1,'00) a-l; q=0,1;o.o, b-l; r=0,1,...5...C'1.

. . *
Suppose that there are no treatment effects , i.e.,
E{y .} = W alln, i, j;
{yhij} - j

and that the experimental errors are independent and have constant
variance for all observations, i.e.,

E {(yhij - w2} = 0% ann, i,

"The symbol E {3 denotes the mathematical expectation operator,
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Then

{a Bct = o,

——

q
unless
P=0,q=0 and r =0, in which case
E {a, B,Cg = abc p.
Furthermore*,
2 2 2
B C = .
viagscl = Loag) oL )0
: i j
Denote by qur the variate defined by
2
Then .
E{y } = Vabe M
000
E {qur} 0, unless p=0, g=0, r =0;
2 _ 2
viv parf = O .
If the experimental errors are normally distributed, then the qur are
normally distributed. (Under fairly weak assumptions the qur will tend "

to be normally distributed in large experiments even for non-normal
distributions of experimental error.) Then the non-negative half-normal

variates,
-=

The symbol V {} denotes the variance operator, V {X} = E{(X-E{X})z}.
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2 2 2 2 '

i
are indeed distributed according to the half-normal density

f(x) = Vz/7r o? exp(-XZIZ 02), X2>0

X < 0.

From this result, the half-normal variates for multi-level experiments
may be seen to be essentially equivalent to those for 2P experiments,
making the work of Daniel. 1959 and Birnbaum 1959 . relevant to the
interpretation.

4. INTERPRETATION OF EXAMPLE. We shall turn now to the
interpretation of the example given earlier. Some difficulty will be
experienced because of our ignorance of the precise nature of the factors
and their levels, the experimental techniques and the observations them-
selves, but we shall attempt to proceed along lines suggested by Daniel
for 2P experiments.

To recapitulate the results of Section 2, we have, in Table 7, 59
ordered variates X, = qur whose empirical cumulative distribution

should resemble the cumulative half-normal distribution under the
hypothesis that there are no treatment effects. We have plotted these
values against their quantiles in Figure 1, where they should be approxi-
mately linear under the null hypothesis.

We note at a glance that the plotted points are markedly and systemati-
cally non-linear.. In fact, a little preliminary geometrical construction
leads us to believe that a number of the variates are too large to have
arisen by chance under the null hypothesis. The rationale for this belief
is as follows. Under the null hypothesis the standard deviation, O , is
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directly approximated by the value of X ., where

m = (0.683 n + 0.5),
= 41, approximately.
From Table 7,

X, =42,

41

Then, under the null hypoth‘esis; the plotted points should lie near a
straight line through the origin and the point (X, P,,), indicated in

Figure 1. Should the largest X lie '"far enough' to the right of this line
it is reasonable to presume that it did not arise by chance under the null
hypothesis. It may then be taken as real and the next largest X promoted
to the largest. This is roughly equivalent to increasing the ordinate 6f
the second point to that of the first point. Should this replotted point also
e ""far enough'' to the right of the line, it too may be judged real and
excluded, promoting the next X to the largest, etc. In Figurel, we make
a crude test of the largest values by constructing a horizontal through
the largest point to intersect the previously constructed empirical cu-
mulative distribution line. From this intersection we drop a vertical
line and observe that all contrasts represented by points lying to the right
of this vertical would have to be excluded before the largest X would lie on
or above the original c. d. line. ‘In this crude manner we judge from
Figure 1 that six to ten of the largest values of X would be unlikely to
occur under the null hypothesis., This graphical construction is no
"exact'" test; in fact it is rather likely that one or more contrasts would
be judged '""real" in this manner even if the null hypothesis did, in fact,
hold. There is one .element of conservativism in this procedure, in that
the plotted c. d. line is based upon all contrasts, while a c.d. line based
only on contrasts not judged "real' at this stage would lie to the left of
the or1g1na.l line. -

Let us tentatwely suppose that the six largest contrasts (A3, A,
C3, Ay, B » Ay) are real cons:Ldermg (after Daniel [1959, Pp. 315] )

their 31mple names, as well as the1r magmtudes relative to the rest of
the set. We plot anew the 53 remaining contrasts in Figure 2. Actually,
in addition to the ten largest remaining contrasts, only a fraction of the
points are plotted, together with the c. d. line through (Xm, Pm), where
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= (0. 683) (53) + 0. 5,

3

37, approximately.

The values of Pk are, of course, recalculated for n = 53. It appears

reasonable to judge from this plot that the four largest contrasts

A final plot of the values obtained after eliminating the ten largest
values is shown in Figure 3. It appears in this plot that all real effects
have been removed, with a residual error standard deviation approximately
equal to

2

x34

= 841

(The actual mean square of the 49 residual contrasts is 816,)

Some further details of interpretation might be attempted. For ex-
ample, there is a suggestion in Figure 1 and in Table 7 that there may
have been plot-splitting, with factor B applied within plots. This also
appears plausible from the rudimentary information given as to the
nature of this factor., A further plotting, not shown here, in which con-
trasts including B, or Bz were separated from those containing B
suggests a whole plot standard deviation of ahout 50-60 and a split-plot
standard deviation of about 20-25,

5. COMPUTER USE. We have used half-normal plots for multi-
level factorial experiments for almost two years. Our first major attempt
to employ this technique was in the analysis of an unreplicated 10 x 5 x
3 x 22 experiment. The factor levels in this experiment were applied
in a split-split-split plot design and certain problems of variance hetero-
geneity were apparent. The half-normal plotting of this data was suffi-
ciently informative that it appeared worthwhile to develop a program for
the IBM 1620 to be employed in computing half-normal variates from
multi-level factorial data, This program, Single Degree of Freedom
Analysis of Variance (SIDOF), has a capacity of eight factors, each at
two to ten levels. It requires as input the observations and normalized
vectors of contrast coefficients Otp, ’Bq’ '{r, etc., where
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Lo = / 2 h=1, 2 ;
Ph - a ph % aph 4 - ) ) ee sy Oy

i=1’ 2; e s 0 b;

j=1,2, ..., c;
etc,

Each factor requires an additional ""pass'' through the machine. On the
first pass, the machine computes the quantities (assuming three factors),

(Aphiy = Z %h Yhij-

+
&

On the second paés are computed the quantities.
A B). = . (A ).,
{ P q)J ? ’6(11 ( P)lJ

and on the third pass the quantities

(ApB.C,) = ZJ 15 (8B

At each pass the ocutput includes both the (signed) contrasts developed and
their squares., This program was one of the first developed for the IBM
1620 at Dugway Proving Ground and consequently was employed for a
short period of time as a general-purpose analysis of variance. (Itis,

of course, much slower than other general-purpose programs available.)
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6. EXPERIENCE. Some general comments on our experiences with
half-normal plots for multi-level factorials may be in order. We shall
be guided in this commentary largely by the approach of Daniel [1959J .

a. Graph Sheets. We have generally used half-sheets of the Prob-
ability Scale x 90 Divisions paper available from Keuffel and Esser
(Nos. 358-23 and 359-23). * Similar papers are available from several
other sources, These papers are not particularly well-suited to the pur-
pose. It would appear that special half~-normal paper might be commer-
cially feasible, but it is not, to our knowledge, currently available.

b. Birnbaum's test statistic. The test statistic developed by
Allan Birnbaum[1959] has been used for our purposes. Birnbaum's
work has been particularly oriented toward 2P experiments and studies
of the behavicr of this statistic in multi-level factorials wo uld be useful.

c. Defective values. Daniel indicates the utility of half-normal
plotting in 2P experiments for detecting defective values. For multi-
level factorials the presence of defective values appears more difficult
to diagnose, particularly with unrestricted sets of orthogonal contrasts.
The isolation of the particular defective values is also more difficult.

d. Plot-splitting. The effect of plot-splitting upon the halfsnormal
plots for multi-level experiments is similar to that described by Daniel.
We have some reservations concerning indiscriminate searches for plot-
splitting, however, Itis generally accepted that in most experiments
two-factor interactions tend to be smaller than main effects, three-
factor interactions tend to be smaller than two-factor interactions, etc.
(Here we are speaking of real effects and interactions, though perhaps
of negligible magnitude.) Thus in actual experiments the slope of half-
normal plots may be expected to increase with the relative number of
high order interactions included. The plotted results of an experiment
involving a number of small but real interactions may appear very simi-
lar to the results induced by plot-splitting, since split plot error con-
trasts invariably contain a relatively larger number of the higher order

The graph sheets used in Figures 1, 2, and 3 were reproduced from
a master kindly provided by Mr. Daniel. It is hoped that such sheets
will soon be published.
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contrasts. Our practice is generally to employ a split plot analysis
only when knowledge of the experimental techniques indicates its pro-
priety. '

e. Convexity of plots, The detection of antilognormal distribution
of error by downward convexity of half-normal plots appears difficult,
as indicated by Daniel fl959, P. 336_]. Most of our analysis work is,
however, based on transformed data and we have seldom experienced
this particular anemaly. In any event, the averaging effect of the con-
trasts would presumably minimize the effects of non-normality of error.
On the other hand, we have noted that the removal of a moderate number
of points representing apparently real effects often results in a downward
convexity of the upper portion of the plot. We generally attribute this
appearance to.the inadvertent removal of one or more points zepresenting
error contrasts, for the result Jooks very much like the plot of a normal
distribution with truncated upper tail.
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